Evaluation and Improvement of SMOS and SMAP Soil Moisture Products for Soils with High Organic Matter over a Forested Area in Northeast China

نویسندگان

  • Mengjie Jin
  • Xingming Zheng
  • Tao Jiang
  • Xiaofeng Li
  • Xiao-Jie Li
  • Kai Zhao
چکیده

Soil moisture (SM) retrieval from SMOS (the Soil Moisture and Ocean Salinity mission) and SMAP (the Soil Moisture Active/Passive mission) passive microwave data over forested areas with required accuracy is of great significance and poses some challenges. In this paper, we used Ground Wireless Sensor Network (GWSN) SM measurements from 9 September to 5 November 2015 to validate SMOS and SMAP Level 3 (L3) SM products over forested areas in northeastern China. Our results found that neither SMOS nor SMAP L3 SM products were ideal, with respective RMSE (root mean square error) values of 0.31 cm3/cm3 and 0.17 cm3/cm3. Nevertheless, some improvements in SM retrieval might be achievable through refinements of the soil dielectric model with respect to high percentage of soil organic matter (SOM) in the forested area. To that end, the potential of the semi-empirical soil dielectric model proposed by Jun Liu (Liu’s model) in improving SM retrieval results over forested areas was investigated. Introducing Liu’s model into the retrieval algorithms of both SMOS and SMAP missions produced promising results. For SMAP, the RMSE of L3 SM products improved from 0.16 cm3/cm3 to 0.07 cm3/cm3 for AM (local solar time around 06:00 am) data, and from 0.17 cm3/cm3 to 0.05 cm3/cm3 for PM (local solar time around 06:00 pm) data. For SMOS ascending orbit products, the accuracy was improved by 56%, while descending orbit products improved by 45%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preliminary Evaluation of the SMAP Radiometer Soil Moisture Product over China Using In Situ Data

The Soil Moisture Active Passive (SMAP) satellite makes coincident global measurements of soil moisture using an L-band radar instrument and an L-band radiometer. It is crucial to evaluate the errors in the newest L-band SMAP satellite-derived soil moisture products, before they are routinely used in scientific research and applications. This study represents the first evaluation of the SMAP ra...

متن کامل

Multi-Scale Validation of SMAP Soil Moisture Products over Cold and Arid Regions in Northwestern China Using Distributed Ground Observation Data

The Soil Moisture Active Passive (SMAP) mission was designed to provide global mapping of soil moisture (SM) on nested 3, 9, and 36 km earth grids measured by L-band passive and active microwave sensors. The validation of SMAP SM products is crucial for the application of the products and improvement of the retrieval algorithm. Since the SMAP SM products were released, much effort has been inve...

متن کامل

Soil Moisture Mapping from Satellites: An Intercomparison of SMAP, SMOS, FY3B, AMSR2, and ESA CCI over Two Dense Network Regions at Different Spatial Scales

A good knowledge of the quality of the satellite soil moisture products is of great importance for their application and improvement. This paper examines the performance of eight satellite-based soil moisture products, including the Soil Moisture Active Passive (SMAP) passive Level 3 (L3), the Soil Moisture and Ocean Salinity (SMOS) Centre Aval de Traitement des Données SMOS (CATDS) L3, the Jap...

متن کامل

Validation of SMOS Soil Moisture Products over the Maqu and Twente Regions

The validation of Soil Moisture and Ocean Salinity (SMOS) soil moisture products is a crucial step in the investigation of their inaccuracies and limitations, before planning further refinements of the retrieval algorithm. Therefore, this study intended to contribute to the validation of the SMOS soil moisture products, by comparing them with the data collected in situ in the Maqu (China) and T...

متن کامل

Sorption, degradation and leaching of pesticides in soils amended with organic matter: A review

The use of pesticides in modern agriculture is unavoidable because they are required to control weeds. Pesticides are poisonous; hence, they are dangerous if misused. Understanding the fate of pesticides will be useful to use them safely. Therefore, contaminations of water and soil resources could be avoided. The fates of pesticides in soils are influenced by their sorption, decomposition and m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017